Elucidating the mechanisms of TDP-43 aggregation in a cellular model of motor neuron disease
نویسندگان
چکیده
MicroRNAs (miRNAs) are short, 22–25 nucleotide long transcripts that may suppress entire signaling pathways by interacting with the 3’-untranslated region (3’-UTR) of coding mRNA targets, interrupting translation and inducing degradation of these targets. The long 3’-UTRs of brain transcripts compared to other tissues predict important roles for brain miRNAs. Supporting this notion, we found that brain miRNAs co-evolved with their target transcripts, that non-coding pseudogenes with miRNA recognition elements compete with brain coding mRNAs on their miRNA interactions, and that Single Nucleotide Polymorphisms (SNPs) on such pseudogenes are enriched in mental diseases including autism and schizophrenia, but not Alzheimer’s disease (AD). Focusing on evolutionarily conserved and primate-specifi c miRNA controllers of cholinergic signaling (‘CholinomiRs’), we fi nd modifi ed CholinomiR levels in the brain and/or nucleated blood cells of patients with AD and Parkinson’s disease, with treatment-related diff erences in their levels and prominent impact on the cognitive and anti-infl ammatory consequences of cholinergic signals. Examples include the acetylcholinesterase (AChE)-targeted evolutionarily conserved miR-132, whose levels decline drastically in the AD brain. Furthermore, we found that interruption of AChE mRNA’s interaction with the primatespecifi c CholinomiR-608 in carriers of a SNP in the AChE’s miR-608 binding site induces domino-like eff ects that reduce the levels of many other miR-608 targets. Young, healthy carriers of this SNP express 40% higher brain AChE activity than others, potentially aff ecting the responsiveness to AD’s anti-AChE therapeutics, and show elevated trait anxiety, infl ammation and hypertension. Non-coding regions aff ecting miRNA-target interactions in neurodegenerative brains thus merit special attention.
منابع مشابه
Partial loss of TDP-43 function causes phenotypes of amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease that causes motor neuron degeneration, progressive motor dysfunction, paralysis, and death. Although multiple causes have been identified for this disease, >95% of ALS cases show aggregation of transactive response DNA binding protein (TDP-43) accompanied by its nuclear depletion. Therefore, the TDP-43 pathology may be a conver...
متن کاملCapturing VCP: Another Molecular Piece in the ALS Jigsaw Puzzle
TDP-43 mislocalization and aggregation are implicated in the pathogenesis of ALS and FTLD-U. Valosin containing protein (VCP) mutations also lead to TDP-43 deposition, resulting in Inclusion Body Myopathy, Paget disease, and Frontotemporal Dementia (IBMPFD). In this issue of Neuron, Johnson et al. used whole-exome capture to identify VCP mutations in familial ALS. This extends the VCP phenotype...
متن کاملTDP-43—The key to understanding amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes motor neuron degeneration leading to progressive muscle atrophy, weakness, paralysis and death. The majority of ALS (>95%) shows intracellular aggregation of transactive response DNA binding protein (TDP-43) as a prominent pathological feature. TDP-43 is normally a nuclear protein. In ALS, TDP-43 accumulates an...
متن کاملOxr1 improves pathogenic cellular features of ALS-associated FUS and TDP-43 mutations
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of motor neuron-like cells. Mutations in the RNA- and DNA-binding proteins, fused in sarcoma (FUS) and transactive response DNA-binding protein 43 kDa (TDP-43), are responsible for 5-10% of familial and 1% of sporadic ALS cases. Importantly, aggregation of misfolded FUS or TDP-43 is also characteristic ...
متن کاملALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43.
Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43(Q331K) and TDP-43(M337V)), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progre...
متن کاملPhosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy.
Neurodegenerative disorders characterized by neuronal and glial lesions containing aggregated pathological TDP-43 protein in the cytoplasm, nucleus, or neurites are collectively referred to as TDP-43 proteinopathies. Lesions containing aggregated TDP-43 protein are a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). In ...
متن کامل